Citation : Rowlens M. Melduni, Michael W. Cullen
The role of left ventricular (LV) diastolic dysfunction in predicting atrial fibrillation (AF) recurrence after successful electrical cardioversion is largely unknown. Studies suggest that there may be a link between abnormal LV compliance and the initial development, and recurrence of AF after electrical cardioversion. Although direct-current cardioversion (DCCV) is a well-established and highly effective method to convert AF to sinus rhythm, it offers little else beyond immediate rate control because it does not address the underlying cause of AF. Preservation of sinus rhythm after successful cardioversion still remains a challenge for clinicians. Despite the use of antiarrhythmic drugs and serial cardioversions, the rate of AF recurrence remains high in the first year. Current evidence suggests that diastolic dysfunction, which is associated with atrial volume and pressure overload, may be a mechanism underlying the perpetuating cycle of AF recurrence following successful electrical cardioversion. Diastolic dysfunction is considered to be a defect in the ability of the myofibrils, which have shortened against a load in systole to eject blood into the high-pressure aorta, to rapidly or completely return to their resting length. Consequently, LV filling is impaired and the non-compliant left ventricle is unable to fill at low pressures. As a result, left atrial and pulmonary vein pressure rises, and electrical and structural remodeling of the atrial myocardium ensues, creating a vulnerable substrate for AF. In this article, we review the current evidence highlighting the association of LV diastolic dysfunction with AF recurrence after successful electrical cardioversion and provide an approach to the management of LV diastolic dysfunction to prevent AF recurrence.